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Assignment 2—solutions
We fix throughout a probability space (€2, F,P) on which we are given a filtration F, unless otherwise stated.

Approximating stopping times
Let 7 be an F-optional time. Define for any integer n € N* the following random times, for any w € )
7(w), if T(w) = 400,
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Show that (7,,)nen+ is a non-increasing sequence of F—stopping times, which converges to 7, and such that for any set
A€ Fry, we have AN {1, = k/2"} € Fj,/on, for any integers (n, k) € (N*)2.

Fix some n € N*. For any t > 0, there exists a unique positive integer k, such that (k, —1)/2" <t < k,/2".
We thus have
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since 7 is an F—optional time. This implies that 7, is an F—stopping time.

Next, we have for any w € 2 and any n € N*

_ [27 7 (w)] +1 < [2"7(w)]| + 1
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Tn+1(W) = T (w) = +o0, if 7(w) = 400, and 7,41 (w) = 7 (w), if T7(w) < 4o0.

Indeed
2"7(w)|+1  [2"Fir(w)] +1  2[2%7(w)] +1— [2"M 7 (w)] _ 2"Hir(w) — 1 — 27T ir(w) 1

on on+1 - on+1 = on+1 - on+1°

However, since the left-hand side is an integer divided by 2"*!, the above inequality actually proves that
it is non-positive, which gives us the required monotonicity. Next, notice that for any w € 2 and any

n € N*, we either have

Tn(w) = 7(w) = 400, or T(w) < T (w) < T(w) + zin

This implies immediately that 7,,(w) converges to 7(w) as n goes to infinity. As for the final result, let us
fix some A € F... We have that for any integers k and n greater than 1

AN {ry = k/2"} = AN {r < k/2'} 0 {r 2 (k= 1)/2"} € Fipan,

by definition of F.,.

Local boundedness and filtrations
Let U be a non-negative and unbounded random variable on (Q, F,P), define
Xt = Ul{t>1}, t Z 0,

and let F := FX.



1) Show that F is not right-continuous and that a random time 7 is an F-stopping time if and only if 7 is a
deterministic number in [0, 1], or 7 = f(U) for some Borel-measurable map f: R — (1, +00).

X is obviously caglad, and it is clear that for any ¢ € [0,1], F; = {0,Q}, while F; = o(U) for t > 1,
which shows that right-continuity of F fails at ¢t = 1. Next, the random times mentioned in the
question are clearly F—stopping times, as this is obvious in the deterministic case, and in the other
case, we have for any f:R — (1,+00) and for any ¢t > 0

() <) = {“’ ift e [0,1] .

{f(U) <t} e Fip C F, ift > 1.
Conversely, if 7 is an F—stopping time, we have {r <t} € F; for any ¢ > 0. In particular, for ¢ € [0, 1]
we must have {7 < ¢} equal to either ) or 2, meaning that either 7 is a deterministic constant in [0, 1]
or 7 > 1. Next, for ¢t > 1, we must have {r <t} € ¢(U), and the o(U)-measurable random variables
are exactly given by f(U) for some Borel-measurable map f, which must then be strictly above 1.

2) Show that X is not (F,P)-locally bounded.

If there existed a sequence (7, ),en of F—stopping times converging to +oc such that for any n € N,
17,50y X™ is bounded. Then, for n € N sufficiently large, we must have 7,, > 1, and we can therefore
assume without loss of generality that there is a sequence (f"),cy of Borel-measurable maps from
R to (1,400) such that 7, = f*(U), n € N. Notice then that

0, if ¢ € [0, 1]
XTT,, = Xn _ ’ PR B
t Ut {U, ift>1,

and therefore X™ cannot be P-a.s. bounded.

Emery topology and change of measure
Show that the (F,P)-Emery topology is invariant under an equivalent change of measure.

It is clearly enough to show that if (X"),cy is a sequence converging to 0 for the (F,P)-Emery topology,
then it also converges to 0 for the (F,Q)—Emery topology, for any equivalent measure Q. Fix such a
sequence and let Q be such an equivalent measure with Radon—Nikodym derivative % =: Z. This means
that for any every sequence (£"),cn of simple F-predictable processes bounded by 1, and every t > 0, the
following convergence holds in P-probability
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To prove that (X"),cy also converges for the (F,Q)-Emery topology, it therefore suffices to prove that
convergence in P-probability is equivalent to convergence in Q-probability. Consider thus some sequence
(Y™),en converging in P-probability to Y, and fix two positive constants ¢ and ¢. P and Q being
equivalent, for any A € F, we can alway find some ¢ > 0 such that if P[A] < §, then Q[4] < ¢/. Now
take A := {|Y” — Y| > ¢}. We know that for n large enough, we have P[|Y" — Y| > ¢] < 4, so that
QY™ — Y| > ¢] < ¢’ which proves the result by arbitrariness of ¢ and ¢'.

Completeness and the Emery topology

We let Sy(FF,P) be the space of bounded, simple F-predictable processes, and we assume that F satisfies the usual
conditions.



1) Show that the space of cadlag and F-adapted processes, as well as the space of caglad and F-adapted processes
are complete under the (IF,P)-Emery topology (you may use here the result of Proposition 4.6.5 and Theorem
4.6.2 from the lecture notes).

Let (X"),en be a sequence of cadlag (resp. caglad), F-adapted processes, which is Cauchy under
the (]F,IF’)—Emery topology. By Proposition 4.6.5, this is also a Cauchy sequence for the P—ucp
convergence, so it has a P—ucp limit X by Theorem 4.6.2, which is also cadlag (resp. caglad) and
F-adapted.

Then, since X" —,_, 1~ X; in P-probability for each ¢ > 0, it follows immediately that
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for all simple F-predictable processes £ which are bounded by 1. Hence, setting Y" := X" - X, n € N,
we deduce that for any such simple F-predictable process £, we have

Eﬂ”[ /\1]: lim EP[
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Taking the supremum over all £ gives

limsup dem (X" — X)) < limsup limsup dem (X" — X™) =0,

n——+oo n—+oo0 m——+oo

t
€o(X0 — X + / £d(X — X™),

A 1} < limsup dem (X" — X™).

m——+oo

t
Yy + / €.dy"
0

since (X™)pen is Cauchy.

2) Show that if X is cadlag process, the following are equivalent

(i) the map Jx from Sy(F,P) to the set of cadlag and F-adapted processes defined by

Tx(6) = /0 6dX,,

is continuous with respect to P—ucp convergence on both spaces;

(ii) for every t € [0, +0o0), the mapping Iy+ from Sy(F,P) to LO(R, F) with Ix: (&) := Jx(£)¢, is continuous with
respect to the uniform norm metric on S(F,P) and convergence in P-probability on LY(R, F).

Since Jx and Ix:,t € [0,00) are linear mappings between topological vector spaces, it suffices to establish
the continuity at the origin of S,(F,P). Let X satisfy (i) and let (¢"),eny be a sequence in Sp(F,P) which
converges uniformly to 0. This of course implies the weaker convergence " —, ;i 0 in the P—ucp
topology. Since X satisfies (i), Jx(£") —n—+00 0 for the P—ucp topology. In particular, for any ¢ € [0, c0)
we have Ix:(£") — 0 in P-probability, as claimed.

For the converse, let ({"),cn be a sequence in S,(F,P) converging P—ucp to 0, and take ¢ > 0. Fix a
t > 0 and € > 0. By assumption, we can find § > 0 such that for any n € N, ||H||p~® rp) < J, then

]P’H fot ﬁngs| > c] < e. Now, for each n € N define the F—stopping times (recall that F satisfies the usual
conditions)
> c}.

t
i=inf{t>0:£ >0},0" :=inf {t >0: ‘/ §" 10,77 (5)d X
0

Then, the following inequalities hold for any ¢ > 0

]P’[ sup / &ndX,| > c] < ]P’[ sup / Eulio,rmy(u)d Xy | > c} + P[r™ < 1]
0<s<t 0 0<s<t 0
< P[ sup / Eulio,rmnon)(u)d X, | > c} + Pl < 1]
0<s<t 0




for large enough n. The first line follows, since " = "1y .»] up to time ¢ on the event {7" >t} holds.
The second line is clear by definition of ¢"”. For the third line, note that H fot 521[077"]"L°¢(R}'P) <6 by

definition of 7,, and left-continuity of H", and therefore we can use the assumption on I; to bound this
probability. For the last line, note that {7" <t} = {sup,c(oI[{;| > ¢} has low probability for large n,
thanks to P—ucp convergence.

Putting everything together, we see that fo & dX,, converges P—ucp to 0, as desired.



