Mathematical Finance Dylan Possamaï

Assignment 2—solutions

We fix throughout a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which we are given a filtration \mathbb{F} , unless otherwise stated.

Approximating stopping times

Let τ be an \mathbb{F} -optional time. Define for any integer $n \in \mathbb{N}^*$ the following random times, for any $\omega \in \Omega$

$$\tau_n(\omega) := \begin{cases} \tau(\omega), \text{ if } \tau(\omega) = +\infty, \\ \sum_{k=1}^{+\infty} \frac{k}{2^n} \mathbf{1}_{\{(k-1)/2^n \le \tau(\omega) < k/2^n\}}. \end{cases}$$

Show that $(\tau_n)_{n\in\mathbb{N}^*}$ is a non-increasing sequence of \mathbb{F} -stopping times, which converges to τ , and such that for any set $A \in \mathcal{F}_{\tau+}$, we have $A \cap \{\tau_n = k/2^n\} \in \mathcal{F}_{k/2^n}$, for any integers $(n,k) \in (\mathbb{N}^*)^2$.

Fix some $n \in \mathbb{N}^*$. For any $t \ge 0$, there exists a unique positive integer k_o such that $(k_o - 1)/2^n \le t < k_o/2^n$. We thus have

$$\{\tau_n \le t\} = \bigcup_{k=1}^{+\infty} \{k/2^n \le t\} \cap \{(k-1)/2^n \le \tau < k/2^n\} = \bigcup_{k=1}^{k_o-1} \{(k-1)/2^n \le \tau < k/2^n\} \in \mathcal{F}_{(k_0-1)/2^n} \subset \mathcal{F}_t,$$

since τ is an \mathbb{F} -optional time. This implies that τ_n is an \mathbb{F} -stopping time.

Next, we have for any $\omega \in \Omega$ and any $n \in \mathbb{N}^{\star}$

$$\tau_{n+1}(\omega) = \tau_n(\omega) = +\infty, \text{ if } \tau(\omega) = +\infty, \text{ and } \tau_{n+1}(\omega) = \frac{\lfloor 2^{n+1}\tau(\omega)\rfloor + 1}{2^{n+1}} \le \frac{\lfloor 2^n\tau(\omega)\rfloor + 1}{2^n} = \tau_n(\omega), \text{ if } \tau(\omega) < +\infty.$$

Indeed

$$\frac{\lfloor 2^n \tau(\omega) \rfloor + 1}{2^n} - \frac{\lfloor 2^{n+1} \tau(\omega) \rfloor + 1}{2^{n+1}} = \frac{2 \lfloor 2^n \tau(\omega) \rfloor + 1 - \lfloor 2^{n+1} \tau(\omega) \rfloor}{2^{n+1}} \ge \frac{2^{n+1} \tau(\omega) - 1 - 2^{n+1} \tau(\omega)}{2^{n+1}} = -\frac{1}{2^{n+1}}.$$

However, since the left-hand side is an integer divided by 2^{n+1} , the above inequality actually proves that it is non-positive, which gives us the required monotonicity. Next, notice that for any $\omega \in \Omega$ and any $n \in \mathbb{N}^*$, we either have

$$\tau_n(\omega) = \tau(\omega) = +\infty$$
, or $\tau(\omega) < \tau_n(\omega) \le \tau(\omega) + \frac{1}{2^n}$

This implies immediately that $\tau_n(\omega)$ converges to $\tau(\omega)$ as n goes to infinity. As for the final result, let us fix some $A \in \mathcal{F}_{\tau+}$. We have that for any integers k and n greater than 1

$$A \cap \{\tau_n = k/2^n\} = A \cap \{\tau < k/2^n\} \cap \{\tau \ge (k-1)/2^n\} \in \mathcal{F}_{k/2^n},$$

by definition of $\mathcal{F}_{\tau+}$.

Local boundedness and filtrations

Let U be a non-negative and unbounded random variable on $(\Omega, \mathcal{F}, \mathbb{P})$, define

$$X_t := U \mathbf{1}_{\{t > 1\}}, \ t \ge 0,$$

and let $\mathbb{F} := \mathbb{F}^X$.

1) Show that \mathbb{F} is not right-continuous and that a random time τ is an \mathbb{F} -stopping time if and only if τ is a deterministic number in [0, 1], or $\tau = f(U)$ for some Borel-measurable map $f : \mathbb{R} \longrightarrow (1, +\infty)$.

X is obviously càglàd, and it is clear that for any $t \in [0,1]$, $\mathcal{F}_t = \{\emptyset, \Omega\}$, while $\mathcal{F}_t = \sigma(U)$ for t > 1, which shows that right-continuity of \mathbb{F} fails at t = 1. Next, the random times mentioned in the question are clearly \mathbb{F} -stopping times, as this is obvious in the deterministic case, and in the other case, we have for any $f : \mathbb{R} \longrightarrow (1, +\infty)$ and for any $t \ge 0$

$$\{f(U) \le t\} = \begin{cases} \emptyset, \text{ if } t \in [0,1] \\ \{f(U) \le t\} \in \mathcal{F}_{1+} \subset \mathcal{F}_t, \text{ if } t > 1. \end{cases}$$

Conversely, if τ is an \mathbb{F} -stopping time, we have $\{\tau \leq t\} \in \mathcal{F}_t$ for any $t \geq 0$. In particular, for $t \in [0, 1]$ we must have $\{\tau \leq t\}$ equal to either \emptyset or Ω , meaning that either τ is a deterministic constant in [0, 1] or $\tau > 1$. Next, for t > 1, we must have $\{\tau \leq t\} \in \sigma(U)$, and the $\sigma(U)$ -measurable random variables are exactly given by f(U) for some Borel-measurable map f, which must then be strictly above 1.

2) Show that X is not (\mathbb{F}, \mathbb{P}) -locally bounded.

If there existed a sequence $(\tau_n)_{n\in\mathbb{N}}$ of \mathbb{F} -stopping times converging to $+\infty$ such that for any $n\in\mathbb{N}$, $\mathbf{1}_{\{\tau_n>0\}}X^{\tau_n}$ is bounded. Then, for $n\in\mathbb{N}$ sufficiently large, we must have $\tau_n>1$, and we can therefore assume without loss of generality that there is a sequence $(f^n)_{n\in\mathbb{N}}$ of Borel-measurable maps from \mathbb{R} to $(1, +\infty)$ such that $\tau_n = f^n(U)$, $n\in\mathbb{N}$. Notice then that

$$X_t^{\tau_n} = X_{f^n(U) \wedge t} = \begin{cases} 0, \text{ if } t \in [0, 1], \\ U, \text{ if } t > 1, \end{cases}$$

and therefore X^{τ_n} cannot be \mathbb{P} -a.s. bounded.

Émery topology and change of measure

Show that the (\mathbb{F}, \mathbb{P}) -Émery topology is invariant under an equivalent change of measure.

It is clearly enough to show that if $(X^n)_{n\in\mathbb{N}}$ is a sequence converging to 0 for the (\mathbb{F},\mathbb{P}) -Émery topology, then it also converges to 0 for the (\mathbb{F},\mathbb{Q}) -Émery topology, for any equivalent measure \mathbb{Q} . Fix such a sequence and let \mathbb{Q} be such an equivalent measure with Radon–Nikodým derivative $\frac{d\mathbb{Q}}{d\mathbb{P}} =: \mathbb{Z}$. This means that for any every sequence $(\xi^n)_{n\in\mathbb{N}}$ of simple \mathbb{F} -predictable processes bounded by 1, and every $t \ge 0$, the following convergence holds in \mathbb{P} -probability

$$\xi_0^n X_0^n + \int_0^t \xi_s^n \mathrm{d} X_s^n \underset{n \to +\infty}{\longrightarrow} 0$$

To prove that $(X^n)_{n\in\mathbb{N}}$ also converges for the (\mathbb{F},\mathbb{Q}) -Émery topology, it therefore suffices to prove that convergence in \mathbb{P} -probability is equivalent to convergence in \mathbb{Q} -probability. Consider thus some sequence $(Y^n)_{n\in\mathbb{N}}$ converging in \mathbb{P} -probability to Y, and fix two positive constants ε and ε' . \mathbb{P} and \mathbb{Q} being equivalent, for any $A \in \mathcal{F}$, we can alway find some $\delta > 0$ such that if $\mathbb{P}[A] \leq \delta$, then $\mathbb{Q}[A] \leq \varepsilon'$. Now take $A := \{|Y^n - Y| > \varepsilon\}$. We know that for n large enough, we have $\mathbb{P}[|Y^n - Y| > \varepsilon] \leq \delta$, so that $\mathbb{Q}[|Y^n - Y| > \varepsilon] \leq \varepsilon'$ which proves the result by arbitrariness of ε and ε' .

Completeness and the Emery topology

We let $\mathcal{S}_b(\mathbb{F},\mathbb{P})$ be the space of bounded, simple \mathbb{F} -predictable processes, and we assume that \mathbb{F} satisfies the usual conditions.

 Show that the space of càdlàg and F-adapted processes, as well as the space of càglàd and F-adapted processes are complete under the (F, P)-Émery topology (you may use here the result of Proposition 4.6.5 and Theorem 4.6.2 from the lecture notes).

Let $(X^n)_{n\in\mathbb{N}}$ be a sequence of càdlàg (resp. càglàd), \mathbb{F} -adapted processes, which is Cauchy under the (\mathbb{F}, \mathbb{P}) -Émery topology. By Proposition 4.6.5, this is also a Cauchy sequence for the \mathbb{P} -ucp convergence, so it has a \mathbb{P} -ucp limit X by Theorem 4.6.2, which is also càdlàg (resp. càglàd) and \mathbb{F} -adapted.

Then, since $X_t^n \longrightarrow_{n \to +\infty} X_t$ in P-probability for each $t \ge 0$, it follows immediately that

$$\int_0^t \xi_s \mathrm{d} X_s^n \longrightarrow_{n \to +\infty} \int_0^t \xi_s \mathrm{d} X_s, \text{ in } \mathbb{P}\text{-probability,}$$

for all simple \mathbb{F} -predictable processes ξ which are bounded by 1. Hence, setting $Y^n := X^n - X$, $n \in \mathbb{N}$, we deduce that for any such simple \mathbb{F} -predictable process ξ , we have

$$\mathbb{E}^{\mathbb{P}}\left[\left|\xi_{0}Y_{0}^{n}+\int_{0}^{t}\xi_{s}\mathrm{d}Y_{s}^{n}\right|\wedge1\right]=\lim_{m\longrightarrow+\infty}\mathbb{E}^{\mathbb{P}}\left[\left|\xi_{0}(X_{0}^{n}-X_{0}^{m})+\int_{0}^{t}\xi_{s}\mathrm{d}(X^{n}-X^{m})_{s}\right|\wedge1\right]\leq\limsup_{m\rightarrow+\infty}d_{\mathrm{em},t}(X^{n}-X^{m}).$$

Taking the supremum over all ξ gives

$$\limsup_{n \to +\infty} d_{\mathrm{em},t}(X^n - X) \le \limsup_{n \to +\infty} \limsup_{m \to +\infty} d_{\mathrm{em},t}(X^n - X^m) = 0,$$

since $(X^n)_{n \in \mathbb{N}}$ is Cauchy.

2) Show that if X is càdlàg process, the following are equivalent

(i) the map J_X from $\mathcal{S}_b(\mathbb{F},\mathbb{P})$ to the set of càdlàg and \mathbb{F} -adapted processes defined by

$$J_X(\xi) := \int_0^{\cdot} \xi_s \mathrm{d}X_s$$

is continuous with respect to P-ucp convergence on both spaces;

(*ii*) for every $t \in [0, +\infty)$, the mapping I_{X^t} from $\mathcal{S}_b(\mathbb{F}, \mathbb{P})$ to $\mathbb{L}^0(\mathbb{R}, \mathcal{F})$ with $I_{X^t}(\xi) := J_X(\xi)_t$, is continuous with respect to the uniform norm metric on $\mathcal{S}_b(\mathbb{F}, \mathbb{P})$ and convergence in \mathbb{P} -probability on $\mathbb{L}^0(\mathbb{R}, \mathcal{F})$.

Since J_X and $I_{X^t}, t \in [0, \infty)$ are linear mappings between topological vector spaces, it suffices to establish the continuity at the origin of $\mathcal{S}_b(\mathbb{F},\mathbb{P})$. Let X satisfy (i) and let $(\xi^n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{S}_b(\mathbb{F},\mathbb{P})$ which converges uniformly to 0. This of course implies the weaker convergence $\xi^n \longrightarrow_{n \to +\infty} 0$ in the \mathbb{P} -ucp topology. Since X satisfies $(i), J_X(\xi^n) \longrightarrow_{n \to +\infty} 0$ for the \mathbb{P} -ucp topology. In particular, for any $t \in [0, \infty)$ we have $I_{X^t}(\xi^n) \longrightarrow 0$ in \mathbb{P} -probability, as claimed.

For the converse, let $(\xi^n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{S}_b(\mathbb{F},\mathbb{P})$ converging \mathbb{P} -ucp to 0, and take c > 0. Fix a $t \ge 0$ and $\varepsilon > 0$. By assumption, we can find $\delta > 0$ such that for any $n \in \mathbb{N}$, $||H||_{\mathbb{L}^{\infty}(\mathbb{R},\mathcal{F},\mathbb{P})} \le \delta$, then $\mathbb{P}[|\int_0^t \xi_s^n \mathrm{d} X_s| > c] < \varepsilon$. Now, for each $n \in \mathbb{N}$ define the \mathbb{F} -stopping times (recall that \mathbb{F} satisfies the usual conditions)

$$\tau^{n} := \inf \left\{ t \ge 0 : \xi^{n}_{t} > \delta \right\}, \sigma^{n} := \inf \left\{ t \ge 0 : \left| \int_{0}^{t} \xi^{n} \mathbf{1}_{[0,\tau^{n}]}(s) \mathrm{d}X_{s} \right| > c \right\}.$$

Then, the following inequalities hold for any $t \ge 0$

$$\mathbb{P}\left[\sup_{0\leq s\leq t}\left|\int_{0}^{s}\xi_{u}^{n}\mathrm{d}X_{u}\right|>c\right]\leq\mathbb{P}\left[\sup_{0\leq s\leq t}\left|\int_{0}^{s}\xi_{u}^{n}\mathbf{1}_{[0,\tau^{n}]}(u)\mathrm{d}X_{u}\right|>c\right]+\mathbb{P}[\tau^{n}\leq t]$$
$$\leq\mathbb{P}\left[\sup_{0\leq s\leq t}\left|\int_{0}^{s}\xi_{u}^{n}\mathbf{1}_{[0,\tau^{n}\wedge\sigma^{n}]}(u)\mathrm{d}X_{u}\right|>c\right]+\mathbb{P}[\tau^{n}\leq t]$$
$$\leq\varepsilon+\mathbb{P}[\tau^{n}\leq t]$$
$$\leq 2\varepsilon,$$

for large enough *n*. The first line follows, since $\xi^n = \xi^n \mathbf{1}_{[0,\tau^n]}$ up to time *t* on the event $\{\tau^n > t\}$ holds. The second line is clear by definition of σ^n . For the third line, note that $\|\int_0^t \xi_s^n \mathbf{1}_{[0,\tau^n]}\|_{\mathbb{L}^{\infty}(\mathbb{R},\mathcal{F},\mathbb{P})} \leq \delta$ by definition of τ_n and left-continuity of H^n , and therefore we can use the assumption on I_t to bound this probability. For the last line, note that $\{\tau^n \leq t\} = \{\sup_{s \in [0,t]} |\xi_s^n| > c\}$ has low probability for large *n*, thanks to \mathbb{P} -ucp convergence.

Putting everything together, we see that $\int_0^{\cdot} \xi_u^n dX_u$ converges \mathbb{P} -ucp to 0, as desired.